Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Korean Circulation Journal ; : 160-167, 2017.
Article in English | WPRIM | ID: wpr-59352

ABSTRACT

Incomplete development and severe malformation of the heart result in miscarriage of embryos because of its malfunction as a pump for circulation. During cardiogenesis, development of the heart is precisely coordinated by the genetically-primed program that is revealed by the sequential expression of transcription factors. It is important to investigate how spatial allocation of the heart containing cardiomyocytes and other mesoderm-derived cells is determined. In addition, the molecular mechanism underlying cardiomyocyte differentiation still remains elusive. The location of ectoderm-, mesoderm-, and endoderm-derived organs is determined by their initial allocation and subsequent mutual cell-cell interactions or paracrine-based regulation. In the present work, we provide an overview of cardiac development controlled by the germ layers and discuss the points that should be uncovered in future for understanding cardiogenesis.


Subject(s)
Female , Humans , Pregnancy , Abortion, Spontaneous , Cilia , Embryonic Development , Embryonic Structures , Germ Layers , Heart , Myocytes, Cardiac , Transcription Factors , Zebrafish
2.
Tissue Engineering and Regenerative Medicine ; (6): 527-537, 2016.
Article in English | WPRIM | ID: wpr-644857

ABSTRACT

Three-dimensional (3D) cultures are known to promote cell differentiation. Previously, we investigated the differentiation of rat dermal fibroblasts to α-smooth muscle actin (α-SMA)-positive myofibroblasts through transforming growth factor (TGF)-β production using a 3D culture model. Here, we investigated the phenotypic change from dermal mesenchymal cells (mostly fibroblasts) to osteoblast-like cells, being inspired by the roles of smooth muscle cells or fibroblasts during vascular calcification. Spindle-shaped cells that grew in heterologous populations out of dermal explants from 2-day-old Wistar rats were cultured within a collagen matrix. α-SMA and alkaline phosphatase (ALP) messenger RNA (mRNA) levels initially increased, followed by a rise in Runx2 and osteocalcin (OCN) mRNA levels without calcification. Calcium deposits were produced in the presence of a high concentration of inorganic phosphate (2.1 mM) or β-glycerophosphate (βGP, 10 mM) after 2 weeks of culture, and both were sensitive to an inhibitor of type III phosphate transporters. An ALP inhibitor decreased only βGP-induced calcification. Inhibition of TGF-β type-I receptors attenuated ALP mRNA levels and βGP-induced calcification, suggesting that endogenous TGF-β stimulates ALP activity and then βGP breakdown. An increase in the number of cells embedded in the collagen gel enhanced the mRNA levels of Runx2 and OCN, but not of ALP. Collectively, several factors are likely to promote the differentiation of dermal mesenchymal cells into osteoblast-like cells and ectopic calcification in a 3D collagen matrix, implying the utility of these cells as a potential autologous cell source for tissue engineering.


Subject(s)
Animals , Rats , Actins , Alkaline Phosphatase , Calcium , Cell Differentiation , Collagen , Dermis , Fibroblasts , Myocytes, Smooth Muscle , Myofibroblasts , Osteocalcin , Phosphate Transport Proteins , Rats, Wistar , RNA, Messenger , Tissue Engineering , Transforming Growth Factors , Vascular Calcification
SELECTION OF CITATIONS
SEARCH DETAIL